The Epicutaneous Immunotherapy Company
This presentation contains forward looking statements including, but not limited to, statements concerning the outcome or success of DBV’s clinical trials; its ability to successfully gain regulatory approvals and commercialize products; its ability to successfully advance its pipeline of product candidates; the rate and degree of market acceptance of its products; and its ability to develop sales and marketing capabilities. Forward looking statements are subject to a number of risks, uncertainties and assumptions. Moreover, DBV operates in a very competitive and rapidly changing environment. New risks emerge from time to time. It is not possible for DBV’s management to predict all risks, nor can DBV assess the impact of all factors on its business or the extent to which any factor, or combination of factors, may cause actual results to differ materially from those contained in any forward looking statements it may make. In light of these risks, uncertainties and assumptions, the forward looking events and circumstances discussed in this presentation may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward looking statements. You should not rely upon forward looking statements as predictions of future events. Although DBV believes that the expectations reflected in the forward looking statements are reasonable, it cannot guarantee that the future results, levels of activity, performance or events and circumstances reflected in the forward looking statements will be achieved or occur. Moreover, except as required by law, neither DBV nor any other person assumes responsibility for the accuracy and completeness of the forward looking statements. Forward looking statements in this presentation represent DBV’s views only as of the date of this presentation. DBV undertakes no obligation to update or review any forward looking statement, whether as a result of new information, future developments or otherwise, except as required by law.
DBV Technologies Today
Recent Progress

Viaskin Peanut – Phase III data expected in 2H 2017
 — Pivotal Phase III recruitment completed ahead of schedule, driven by strong patient demand
 — REALISE trial enrollment complete; designed to support BLA filing and collect real-life data
 — 24-month follow-up data demonstrates sustained treatment benefit for up to three years; late breaking data presented at AAAAI 2017

Viaskin Milk – Phase IIb data expected in 1H 2018
 — Fast Track designation received 3Q’16; Phase IIb completed recruitment in 2H’16
 — EoE Phase IIa pilot trial at CHOP completed randomization in 1H’17

Immunology & Vaccines
 — Viaskin rPT POC trial results provide insight into potential future vaccine development
 — Crohn’s disease, hemophilia and celiac disease prioritized as next targets

US commercial operations
 — Completed recruitment of key US commercial roles

New effort in diagnostics
 — Nestlé Health Science collaboration initiated for milk allergy diagnostic tool
Product Candidates: Leveraging our Platform Technology

Viaskin In and Beyond Food Allergies

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>INDICATION</th>
<th>COMMERCIAL RIGHTS</th>
<th>DEVELOPMENT STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viaskin Peanut</td>
<td>Peanut Allergy</td>
<td>DBV Worldwide</td>
<td>FDA Breakthrough*
FDA Fast Track*</td>
</tr>
<tr>
<td>Viaskin Milk</td>
<td>Cow’s Milk Protein Allergy</td>
<td>DBV Worldwide</td>
<td>FDA Fast Track**</td>
</tr>
<tr>
<td>Viaskin Egg</td>
<td>Hen’s Egg Allergy</td>
<td>DBV Worldwide</td>
<td></td>
</tr>
<tr>
<td>Allergic Diseases</td>
<td>Eosinophilic Esophagitis</td>
<td>DBV Worldwide</td>
<td></td>
</tr>
<tr>
<td>Vaccines</td>
<td>Pertussis boost</td>
<td>DBV Worldwide</td>
<td></td>
</tr>
</tbody>
</table>

*US FDA Breakthrough Therapy and Fast Track designation in children
**US FDA Fast Track designation in pediatric patients two and older
Changing the Field of Immunotherapy
Epicutaneous Immunotherapy

- EPIT delivers antigen through the skin targeting the APC Langerhans cells
- Langerhans cells capture antigen and migrate to lymph node to activate immune system
- Antigen does not enter the bloodstream

Our Viaskin Technology
A Novel Potential Immunotherapy

Viaskin provides allergenic information to the immune system without entering the blood stream.
Despite Increasing Awareness and Prevalence
No Treatment Available in Food Allergy

High unmet medical need

- 50% increase in prevalence among children in the US (1997-2011)
- 1 in 13 children has a food allergy
- Most prevalent food allergies to peanut and milk

Avoidance is not enough

- ~150 deaths per year in the US
- Most deaths occur in patients who are aware of their allergy
- Every 3 minutes, an allergic reaction leads a patient to ER
- 50% of children experience accidental ingestion of traces within 5 years, 75% within 10 years

Need for a safe and convenient treatment

- No therapy available
- Only option is avoidance
- Goal is to increase protection and to reduce the risk of anaphylactic reaction in case of accidental exposure
- Other immunotherapy developments have failed due to safety concerns

1. Jackson KD et al. National Center for Health Statistics Data Brief. No. 121
2. FARE Food Allergy Facts and Statistics
4. FDA Food Facts March 2017
The Viaskin* Technology
Patient-Friendly and Self-Administrable

1 Viaskin per day, ready-to-use and patient friendly

Self-applied to intact skin on the arm or back

Non-invasive, safe, well-tolerated

Potential treatment for children and adults

Patented and wholly-owned manufacturing process

Expected to be prescription product

*Under evaluation in clinical trials for peanut and milk allergies; statements based on trial results observed to date.
Lead EPIT Product Candidate: Viaskin Peanut

Comprehensive Drug Development Plan

Core Development Plan

Phase I
- 100 patients

Phase IIb
- VIPES
- OLFUS-VIPES

Phase III
- PEPITES

Goal: Registration
- REALISE
- 393 patients

Academic Collaborations

Phase IIa
- ARACHILD
- 54 patients

Phase II
- CoFAR 6
- 75 patients
VIPES: Dose-Finding Phase IIb Efficacy and Safety Trial Evaluation at 12 Months

221 stratified patients, 22 centers in US, Canada, France, Poland, and Netherlands

Study Population
- Highly allergic patients
 - > 0.7 kU/L peanut-specific IgE and ≥ 8 mm SPT* wheal
 - Reactive dose at M0 ≤ 300 mg peanut protein (ie. approx 1 peanut)

VIPES & OLFUS Efficacy
- Primary endpoint at M12, M24 and M36
 - ≥ 1000 mg reactive dose OR
 - ≥ 10-fold of the initial reactive dose
- Main secondary endpoints: CRD**, changes in peanut sIgE and sIgG4

*SPT: Skin Prick Test
**CRD: Cumulative Reactive Dose at Food Challenge
Denotes a completed food challenge
VIPES Patient Population Snapshot at Baseline
Highly Allergic Patients

221 subjects randomized
- 113 Children (6-11)
- 73 Adolescents (12-17) & 35 Adults (18+)

Highly allergic subjects (median)
- Children = 30 mg
- Adolescents & Adults = 100 mg

Very high IgE levels: > 100 kU/L
- 47% of Children
- 38% of All Subjects

Medical history of patients
- Asthma
- Eczema/Atopic Dermatitis
- Allergic Rhinitis
- Polyallergic

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td>130</td>
<td>58.8</td>
</tr>
<tr>
<td>Eczema/Atopic Dermatitis</td>
<td>114</td>
<td>51.6</td>
</tr>
<tr>
<td>Allergic Rhinitis</td>
<td>96</td>
<td>43.4</td>
</tr>
<tr>
<td>Polyallergic</td>
<td>183</td>
<td>82.8</td>
</tr>
</tbody>
</table>
VIPES Highlights Viaskin’s Safety Profile & Ease of Use

High Compliance Rate, Low Drop-Outs

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>50 µg</th>
<th>100 µg</th>
<th>250 µg</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=</td>
<td>56</td>
<td>53</td>
<td>56</td>
<td>56</td>
<td>221</td>
</tr>
<tr>
<td>Overall compliance (%)</td>
<td>Median</td>
<td>97.0</td>
<td>96.9</td>
<td>97.8</td>
<td>98.7</td>
</tr>
<tr>
<td>Drop-out not related to Viaskin</td>
<td>n (%)</td>
<td>2 (3.6)</td>
<td>2 (3.8)</td>
<td>6 (10.7)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Drop-out related to Viaskin</td>
<td>n (%)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (1.8)</td>
<td>1 (1.8)</td>
</tr>
</tbody>
</table>

- No use of epinephrine related to Viaskin Peanut application
- No SAEs related to Viaskin Peanut
- 2 withdrawals due to related adverse events (i.e. dermatitis)
- Most frequent related AEs: local cutaneous reaction >90% of subjects mainly mild and moderate (50% with a duration < 2 months)
VIPES Primary Endpoint Met
Focus on Children (Ages 6-11)

Response rate in children across doses after 12 months

<table>
<thead>
<tr>
<th>Dose</th>
<th>% of Responders</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>19.4%</td>
<td>31</td>
</tr>
<tr>
<td>50 µg</td>
<td>57.1%</td>
<td>28</td>
</tr>
<tr>
<td>100 µg</td>
<td>46.2%</td>
<td>26</td>
</tr>
<tr>
<td>250 µg</td>
<td>53.6%</td>
<td>28</td>
</tr>
</tbody>
</table>

p = 0.0076
p = 0.0453
p = 0.0035
VIPES Peanut Consumption in Children (Ages 6-11)
Clear Dose Response, Clear Magnitude of Effect

Increase in CRD in children after 12 months (Mean and Median)*

Mean CRD increase (95% CI)

- Placebo: n = 30, Median = 0.0
- 50 μg: n = 28, Median = 135.0
- 100 μg: n = 24, Median = 214.5
- 250 μg: n = 28, Median = 400.0

*p < 0.001
*p = 0.007
*p = 0.003

* Excluding missing data

4-5 peanuts
VIPES Immunological Changes in Children (Ages 6-11) Supports Treatment Effect

Peanut-specific IgE (kU/L)

Peanut-specific IgG4 (mg/L)

- Viaskin Peanut 250 µg, n=28
- Viaskin Peanut 100 µg, n=26
- Viaskin Peanut 50 µg, n=28
- Placebo, n=31
OLFUS-VIPES: Open-Label Follow-Up Trial to VIPES Extension Trial to Support Use of Viaskin Peanut

221 stratified patients, 22 centers in US, Canada, France, Poland, and Netherlands

VIPES Dose-finding

- Placebo
- 50 µg
- 100 µg
- 250 µg

OLFUS-VIPES Open Label Follow-Up Study

- 250 µg

M0 → M12 → M0

171 patients opted to enroll in OLFUS (overall 83% roll-over rate from VIPES)

- 97 children and 74 adolescents & adults

Assessed long-term safety and efficacy

Double-Blind Placebo-Controlled Food Challenge (DBPCFC) administered at month-12 and month-24

Month-26 DBPCFC to explore “sustained unresponsiveness”

- Patients unresponsive to CRD* > 1,440 mg at month-24 DBPCFC were eligible to continue study
- Two-month period without treatment or consumption of peanut to assess durability of response

*CRD: Cumulative Reactive Dose at Food Challenge
Denotes a completed food challenge
In children treated for three years with a 250 µg dose there was a trend of progressive response to treatment as measured by increased response rate, higher CRD* and serological changes
 — Treatment benefit was observed to be long-lasting for three years

No decreased compliance or increased frequency of AEs in VIPES patients treated for 24 additional months
 — 95.5% overall compliance rate was observed throughout the study
 — No SAEs or epinephrine use due to treatment was reported in 36 months
 — Most adverse events were related to application site and were mild to moderate, with decreasing severity and frequency over time

*CRD: Cumulative Reactive Dose at Food Challenge
OLFUS-VIPES Results, Ages 6-11

Significant Increase in Peanut Consumption and Sustained Treatment Benefit after 36 months of Viaskin Peanut 250 μg

Response Rate at OLFUS: baseline, year-1 and year-2

- **OLFUS baseline**
 - n = 21
 - 57.1% (12/21)

- **OLFUS year 1**
 - n = 20*
 - 80.0% (16/20)

- **OLFUS year 2**
 - n = 18**
 - 83.3% (15/18)

OLFUS Patients Change in CRD***

<table>
<thead>
<tr>
<th></th>
<th>OLFUS baseline</th>
<th>OLFUS year 1</th>
<th>OLFUS year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Rate</td>
<td>57.1% (12/21)</td>
<td>80.0% (16/20)</td>
<td>83.3% (15/18)</td>
</tr>
<tr>
<td>CRD Median</td>
<td>44 mg</td>
<td>444 mg</td>
<td>1,440 mg</td>
</tr>
<tr>
<td>CRD Mean ± 95% CI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 1 child discontinued (not related to Viaskin Peanut)
** 2 children discontinued (none related to Viaskin Peanut)
***CRD: Cumulative Reactive Dose at Food Challenge

Excluding missing data
OLFUS-VIPES Results, Ages 6-11
Biomarkers Reflect Strong Immunomodulation

Median relative change = 100 x (Month xx – Baseline)/Baseline
Viaskin Peanut 250 µg, n=18
CoFAR6 (Phase II)
Efficacy and Safety – NIAID sponsored

75 patients; 4-25 years of age; Confirmed peanut allergy by SPT/slgE levels

Primary endpoint: Proportion with a treatment success following 52 weeks of blinded treatment
- Passing a 5044 mg OFC* to peanut protein at week 52 OR ≥ 10-fold increase in the successfully consumed dose (SCD) of peanut protein at week 52 compared to baseline OFC

Secondary endpoints:
- Comparison of Viaskin Peanut 100 µg vs Viaskin Peanut 250 µg doses at week 52
- Desensitization and sustained unresponsiveness at week 130
- Incidence of all adverse events
- Changes in immune markers

*OFC: Oral Food Challenge

Jones S et al. (AAAAI Session 1201)
CoFAR6 Trial: Primary Endpoint Was Met
Findings Reaffirm VIPES Results

- No SAEs or Epinephrine due to drug
- 96% compliance
- Primary endpoint met (p=0.003)
- Significant age by treatment interaction
 - ~1/3 of children treated with 250 µg were able to tolerate > 1,000 mg protein (~4 peanuts)
- Significant increase in IgG4
PEPITES: Pivotal Phase III Global Trial
Recruitment Completed Ahead of Schedule – Upsized Due to Patient Demand

- **Study Population**
 - Highly allergic patients ages 4-11
 - > 0.7 kU/L peanut-specific IgE and ≥ 8 mm SPT* wheal
 - Reactive dose at M0 ≤ 300 mg peanut protein (i.e. approx 1 peanut)

- **Efficacy Endpoints**
 - Primary endpoint at M12
 - Treatment responders (%) in active group compared to placebo at DBPCFC**:
 - For subjects with a M0 ED*** ≤ 10mg: responder if ED ≥ 300 mg at M12
 - For subjects with a M0 ED > 10mg: if ED ≥ 1,000 mg at M12
 - Main secondary endpoints: CRD****, LS Mean, changes in peanut sIgE and sIgG4

* SPT: Skin Prick Test
** DBPCFC: Double-Blind Placebo-Controlled Food Challenge
*** ED: Eliciting Dose
**** CRD: Cumulative Reactive Dose at Food Challenge

Denotes a completed food challenge; Denotes a pending food challenge

PEPITES: Pivotal Phase III Global Trial
Recruitment Completed Ahead of Schedule – Upsized Due to Patient Demand

- **Study Population**
 - 356 peanut allergic children
 - US, Canada, Australia, Germany, Ireland

- **Efficacy Endpoints**
 - Primary endpoint at M12
 - Treatment responders (%) in active group compared to placebo at DBPCFC**:
 - For subjects with a M0 ED*** ≤ 10mg: responder if ED ≥ 300 mg at M12
 - For subjects with a M0 ED > 10mg: if ED ≥ 1,000 mg at M12
 - Main secondary endpoints: CRD****, LS Mean, changes in peanut sIgE and sIgG4

* SPT: Skin Prick Test
** DBPCFC: Double-Blind Placebo-Controlled Food Challenge
*** ED: Eliciting Dose
**** CRD: Cumulative Reactive Dose at Food Challenge

Denotes a completed food challenge; Denotes a pending food challenge
VIPES Post Hoc Analysis Using PEPITES Responder Definition
Decreasing Placebo Rate to Increase Treatment Magnitude

VIPES Children (6-11 years) - Viaskin 250 µg at M12

Reported Response Rate

<table>
<thead>
<tr>
<th></th>
<th>Placebo n = 31</th>
<th>250 µg n = 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of responders (95% CI)</td>
<td>19.4%</td>
<td>53.6%</td>
</tr>
</tbody>
</table>

VIPES Response Rate using the PEPITES Response Criteria

<table>
<thead>
<tr>
<th></th>
<th>Placebo n = 31</th>
<th>250 µg n = 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of responders (95% CI)</td>
<td>6.5%</td>
<td>46.4%</td>
</tr>
</tbody>
</table>

p = 0.0076
p = 0.0007
Phase III REAL Life Use and Safety of EPIT (REALISE)
Enrollment Completed; Higher than Expected Patient Demand

393 peanut allergic children
32 centers in North America

Study Population
- Patients 4 to 11 with history of IgE-mediated reactions to peanut
 - Including patients with severe anaphylaxis
- ≥ 14 kU/L peanut-specific IgE and ≥ 8 mm SPT* wheal

Safety & Exploratory Endpoints
- Primary endpoint to assess safety at M6
 - Treatment Emergent Adverse Events
- No oral food challenges are required at baseline
- Exploratory endpoints
 - Quality of Life Questionnaires (FAQLQ & FAIM)
 - Evolution of peanut-specific serological markers over time (IgE, IgG4, SPT wheal)

* SPT: Skin Prick Test
Part A: ~50 patients
- Placebo (n=10)
- 100 µg (n=20)
- 250 µg (n=20)

Children ages 1-3 with peanut allergy
- > 0.7 kUI/L peanut-specific IgE and ≥ 6 mm SPT* wheal
- Reactive dose at M0 ≤ 300 mg peanut protein

Efficacy Endpoints
- Primary endpoint at M12
 - Treatment responders (%) in active group compared to placebo at DBPCFC:
 - For subjects with a M0 ED** ≤ 10mg: responder if ED ≥ 300 mg at M12
 - For subjects with a M0 ED > 10mg: if ED ≥ 1,000 mg at M12
- Main secondary endpoints: CRD***, changes in peanut slgE and slgG4

Part B: ~191 additional patients
- Highest safe dose
 - n=127
- Placebo
 - n=64

If no safety concerns, patients remain on dose from Part A

Study Population
- EPITOPE: Planned Phase III Global Trial in Children Ages 1-3
 - To Start in 1H 2017

DSMB

M0 M3 M12

* SPT: Skin Prick Test, ** ED: Eliciting Dose, *** CRD: Cumulative Reactive Dose at Food Challenge
Denotes a pending food challenge
Viaskin Milk: MILES Phase IIb Recruitment Completed

* SPT: Skin Prick Test
** CRD: Cumulative Reactive Dose at Food Challenge
Denotes a completed food challenge; †Denotes a pending food challenge

Study Population
- 2-17 years old
- Highly sensitive to milk (positive milk-specific IgE and SPT*): reactive dose at baseline (M0) ≤300 mg cow’s milk protein (‘CMP’) (i.e. ~ ≤9.4 mL of CMP)

EfficacyEndpoints
- Primary endpoints: ≥ 10-fold increase in CRD** at M12 and at least 144 mg of CMP OR CRD ≥ 1,444 mg at M12
- Main secondary endpoints include change from baseline in IgE, IgG4

Pediatric Phase I/IIa
USA & Canada
Part A: 18 patients
Part B: 180 patients

Phase I (Part A)
- Cohort at 500µg dose
- Cohort at 300µg dose
- Cohort at 150µg dose

Phase II (Part B)
- Placebo
- FDA & DSMB
- Cohort at 500µg dose
- Cohort at 300µg dose
- Cohort at 150µg dose
- M0
- M12
- M24

Highest safe dose
Leveraging the Viaskin Immunotherapy Platform
Potential Product Candidates & Indications

<table>
<thead>
<tr>
<th>Category</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergies</td>
<td>• Peanut</td>
</tr>
<tr>
<td></td>
<td>• Milk</td>
</tr>
<tr>
<td></td>
<td>• Hen’s Egg</td>
</tr>
<tr>
<td>Allergic Diseases</td>
<td>• EoE</td>
</tr>
<tr>
<td>Prevention</td>
<td>• Allergic march and asthma prevention</td>
</tr>
<tr>
<td>Autoimmune</td>
<td>• Celiac</td>
</tr>
<tr>
<td></td>
<td>• Refractory Hemophilia A</td>
</tr>
<tr>
<td></td>
<td>• Type I Diabetes</td>
</tr>
<tr>
<td>Inflammatory</td>
<td>• IBD</td>
</tr>
<tr>
<td>Vaccines</td>
<td>• Pertussis boost</td>
</tr>
<tr>
<td></td>
<td>• RSV</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>• Pediatric CMPA (Nestlé Health Science partner)</td>
</tr>
</tbody>
</table>
Where We Are Today
Upcoming Milestones

1H’17

- Completion of recruitment for SMILEE Phase IIa study of Viaskin Milk for EoE
- Data presented at AAAAI 2017 including full OLFUS-VIPES results for Viaskin Peanut
- Completion of recruitment for REALISE trial of Viaskin Peanut
- Results from Viaskin rPT pilot proof of concept trial
 - Launch of Viaskin Peanut trial in children ages 1-3
 - Poster presentations expected at EAACI 2017

2H’17

- PEPITES Phase III results for Viaskin Peanut expected
- REALISE Phase III results for Viaskin Peanut expected

1H’18

- MILES Phase IIb results for Viaskin Milk expected
- SMILEE Phase IIa results for Viaskin Milk for EoE expected
Electrospray Proprietary Technology
Patented and Wholly-Owned Manufacturing Process

- Deposits very small & precise quantities of API on Viaskin, devoid of adjuvants
- Stored at room temperature, providing a long shelf life
- Scaled-up GMP manufacturing process to annual production capacity of 30 million patches per GEN-4.0 machine
- Fully designed & engineered by DBV
DBV Technologies
Key Financial Data

Cash position as of March 31, 2017:

- € 227.0m

Ticker:

- Nasdaq: DBVT
- Euronext Paris: DBV

Share Capital:

- Ordinary shares* (Euronext Paris):
 - Current: 24.7m
 - Fully Diluted: 27.3m
- American Depository Shares (Nasdaq):
 - Each ADS represents 0.5 ordinary shares

*as of March 31, 2017
Measuring Efficacy
Double-Blind Placebo-Controlled Food Challenge

- Standardized GMP challenge matrix¹
- Standardized semi-logarithmic increase of peanut protein doses (DBPCFC² as per PRACTALL³)
- Allergic symptoms are graded from a standardized published protocol⁴
- Challenge stopped by clear objective symptoms

<table>
<thead>
<tr>
<th>CATEGORIES</th>
<th>Objective symptoms</th>
<th>Grade</th>
<th>Subjective symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. SKIN</td>
<td>A. Erythematous rash: % area involved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Pruritus</td>
<td>0 1 2 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Urticaria/Angioedema</td>
<td>0 1 2 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Rash</td>
<td>0 1 2 3</td>
<td></td>
</tr>
<tr>
<td>II. UPPER RESPIRATORY</td>
<td>A. Sneezing/itching</td>
<td>0 1 2 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Nasal congestion</td>
<td>0 1 2 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Rhinorrhea</td>
<td>0 1 2 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Laryngitis</td>
<td>0 1 2 3</td>
<td></td>
</tr>
<tr>
<td>III. LOWER RESPIRATORY</td>
<td>A. Wheezing</td>
<td>0 1 2 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Subjective Complaints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 1 2 3</td>
<td>Itchy mouth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 1 2 3</td>
<td>Itchy throat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 1 2 3</td>
<td>Nausea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 1 2 3</td>
<td>Abdominal pain</td>
</tr>
<tr>
<td>IV. GASTROINTESTINAL</td>
<td></td>
<td></td>
<td>B. Objective Complaints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 1 2 3</td>
<td>Diarrhea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 1 2 3</td>
<td>Vomiting</td>
</tr>
<tr>
<td>V. CARDIOVASCULAR</td>
<td>Normal heart rate to bradycardia</td>
<td>0 1 2 3</td>
<td></td>
</tr>
</tbody>
</table>

¹Cochrane et al, Allergy 2012
²Double-Blind, Placebo-Controlled Food Challenge
³Sampson et al, JACI 2012
⁴Nowak-Wegrzyn et al, JACI 2009
VIPES: Primary Efficacy Endpoint Met
Identified Viaskin 250 µg as Phase III Dose

Response rate across doses after 12 months

- Placebo: 25.0% (n = 56)
- 50 µg: 45.3% (n = 53)
- 100 µg: 41.1% (n = 56)
- 250 µg: 50.0% (n = 56)

Significance levels:
- Placebo vs. 50 µg: p = 0.0108
- Placebo vs. 100 µg: p = 0.0292
- Placebo vs. 250 µg: p = 0.1074

Note: CI = Confidence Interval
VIPES: Children, Ages 6-11
Increased Criteria Stringency Supports Strong Efficacy

Proportion of strong responders in children (both x10 and 1,000 mg increase in ED)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% of responders (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0.0%</td>
</tr>
<tr>
<td>50 µg</td>
<td>17.9%</td>
</tr>
<tr>
<td>100 µg</td>
<td>26.9%</td>
</tr>
<tr>
<td>250 µg</td>
<td>32.1%</td>
</tr>
</tbody>
</table>

of children with no objective symptoms during highest dose of M12 DBPCFC

- Placebo: 0
- 50 µg: 0
- 100 µg: 1
- 250 µg: 4

p-values:
- Placebo vs. 50 µg: p = 0.0196
- Placebo vs. 100 µg: p = 0.0025
- Placebo vs. 250 µg: p = 0.0005
Subjects aged 12-55 response rate across doses

VIPES: Adolescents & Adults
High Placebo Response Rate Distorts Analysis

- Placebo: 32.0% (n = 25)
- 50 µg: 32.0% (n = 25)
- 100 µg: 36.7% (n = 30)
- 250 µg: 46.4% (n = 28)

P-values:
- Placebo vs 50 µg: p = 0.7812
- Placebo vs 100 µg: p = 0.3998
- Placebo vs 250 µg: p = 1.0000

95% CI: Confidence Interval
VIPES: Adolescents & Adults
Changes from Baseline CRD Indicate Dose Response Trend

Subjects aged 12-55 increase in baseline CRD at 12 months across doses

Mean CRD increase (95% CI)

- **Placebo**
 - n = 25
 - Median = 0.0 mg

- **50 μg**
 - n = 25
 - Median = 0.0 mg

- **100 μg**
 - n = 30
 - Median = 30.0 mg

- **250 μg**
 - n = 28
 - Median = 335.0 mg
VIPES: Adolescents & Adults
Immunological Changes Support Dose Response Trend

Peanut-specific IgE (kU/L)

Peanut-specific IgG4 (mg/L)

Viaskin Peanut 250 µg, n=28
Viaskin Peanut 100 µg, n=30
Viaskin Peanut 50 µg, n=25
Placebo, n=25
Cow’s Milk EPIT in Children (JACI 2010): A Pilot Trial

Volume of Milk tolerated before symptoms appear (ml)

Active group

Placebo group

48h application, 3/week
Nb treated pt=9, Nb placebo pt=7
3-month treatment

Dupont C *et al.* JACI 2010
Next Generation Allergy Treatments: Prophylaxis
JACI 2015 – Disrupting the Allergic March in Young Mice

Mondoulet et al, 2014. JACI

D0
SENSITIZATION MILK + CT (6 ig for 6 weeks)

D43
IMMUNOTHERAPY
EPIT 100
Sham

D99
SENSITIZATION - PPE (IG)
Sensitization to PPE
Positive Control

D127
SENSITIZATION - PPE (IG)
Sensitization to PPE

D130
IV CHALLENGE TO PEANUT
anaphylaxis measured by the drop in temperature + increase of plasma mMCP1

Mondoulet et al, 2014. JACI
Sensitization to Milk/ Milk-EPIT® / Sensitization to peanut
IV challenge to peanut

Mann-Whitney non parametric test
naive vs Sham, p = 0.0159
naive vs control+, p = 0.0079
EPIT vs Sham, p = 0.0079
EPIT vs control+, p = 0.0079
naive vs EPIT, p = 0.4127

Mondoulet et al, 2014. JACI
IP Protection
Method, Technology, Manufacturing Processes, & Applications

Core Technology

VIASKIN® I:
Dry patch Architecture, electrostatic forces, adhesive crown

VIASKIN® II:
Chamber, Electrostatic API deposit

ELECTROSPRAY

HEMOPHILIA A

EPIT Immuno Rebalancing

Vaccination

Immune disease

Allergy

Manufacturing

Eczema

Peanut

Allergic march

Eosinophilic Esophagitis

BOOST HBS Ag TH1-directed response

CONSENSATION CHAMBER

Core Technology

EPIT

Allergic march