Creating Small Molecule Drugs for Viral Infections and Liver Diseases

Jefferies 2016 Healthcare Conference
June 8, 2016
Forward Looking Statements Disclaimer

This presentation contains forward-looking statements concerning our business, operations and financial performance and condition, as well as our plans, objectives and expectations for our business prospects and the industry in which we operate. Any statements contained herein that are not statements of historical facts may be deemed to be forward-looking statements. In some cases, you can identify forward-looking statements by terminology such as “aim,” “anticipate,” “assume,” “believe,” “contemplate,” “continue,” “could,” “due,” “estimate,” “expect,” “goal,” “intend,” “may,” “objective,” “plan,” “predict,” “potential,” “positioned,” “seek,” “should,” “target,” “will,” “would,” and other similar expressions that are predictions of or indicate future events and future trends, as well as other comparable terminology. All are forward-looking statements based on our management’s current expectations, estimates, forecasts and projections about our business and the industry in which we operate and our management’s beliefs and assumptions. These forward-looking statements are not guarantees of future performance or development and involve known and unknown risks, uncertainties and other factors that are in some cases beyond our control. These risks and uncertainties include the following: (i) our financial prospects for the next several years are dependent upon the development and commercializing efforts of AbbVie for combination therapies for HCV incorporating paritaprevir, or ABT-493, (ii) competition for these therapies, (iii) our prospects for successful development of any other HCV therapies, and (iv) the length, uncertainty and expense of discovering and developing new therapeutics for other diseases. As a result, any or all of our forward-looking statements in this presentation may turn out to be inaccurate.

Please refer to these and other risk factors described or referred to in “Risk Factors” in Enanta’s most recent Form 10-K, and other periodic reports filed with the Securities and Exchange Commission. Enanta cautions investors not to place undue reliance on the forward-looking statements contained in this presentation. These statements speak only as of the date of this presentation, and Enanta undertakes no obligation to update or revise these statements, except as may be required by law.
Virology & liver disease-focused biotech company

- Royalties from 1st HCV Protease Inhib. (PI): paritaprevir (AbbVie partner)
- Second HCV PI program in Ph3: ABT-493 (AbbVie partner)
- Wholly-owned clinical stage HCV compounds
 - Cyclophilin inhibitor (Ph1) EDP-494
 - NS5A inhibitor (POC) EDP-239
- NASH program Ph1 start in 2H 2016 EDP-305
- New programs in HBV and RSV
- Strong balance sheet with approx. $246M cash at March 31, 2016
- Resources to fund clinical programs and to explore new disease areas
Expanding Beyond HCV

- Leverage our core strength in HCV to become a leader in Viral and Liver diseases
- Multiple therapeutic areas with goal of building multiple approaches in each
Broad Virology and Liver Disease Portfolio

<table>
<thead>
<tr>
<th>Discovery</th>
<th>Preclin</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV Wave 1</td>
<td>Paritaprevir (Protease Inhibitor) in 3-DAA Regimen in US & EU (AbbVie)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV Wave 2</td>
<td>Paritaprevir in 2-DAA Regimen in US, EU & Japan (AbbVie)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV Wave 3</td>
<td>ABT-493 (Protease Inhibitor) 2-DAA Regimen (AbbVie)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV Wave 4</td>
<td>EDP-239 (NS5A Inhibitor)</td>
<td></td>
<td>EDP-494 (Cyclophilin Inhib)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBV</td>
<td>Core Inhibitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV</td>
<td>Non-fusion Inhibitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASH & PBC</td>
<td>EDP-305 FXR Agonist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HCV Market

• Market for HCV therapies:
 - Estimated > $18B in 2015
 - Major market in U.S. & E.U. is genotype 1
 • Represents approx. 74% of all HCV infections

• Prevalence
 - CDC recently estimated 2.7M people in U.S. are chronically infected
 - In Europe, an estimated 9M people are infected*
 - In Japan, an estimated 1.5M to 2M people are infected; high prevalence of GT1b**

Source: www.cdc.gov
Four Waves of HCV Opportunity

<table>
<thead>
<tr>
<th>Wave</th>
<th>Regimen</th>
<th>Enanta Asset</th>
<th>Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave 1</td>
<td>3-DAA (ABBV)</td>
<td>paritaprevir (PI)</td>
<td>Double-digit royalty on 30% of net sales</td>
</tr>
<tr>
<td>Wave 2</td>
<td>2-DAA (ABBV)</td>
<td>paritaprevir (PI)</td>
<td>Double-digit royalty on 45% of net sales</td>
</tr>
<tr>
<td>Wave 3</td>
<td>2-DAA (ABBV)</td>
<td>ABT-493 (PI)</td>
<td>Double-digit royalty on 50% of net sales</td>
</tr>
<tr>
<td>Wave 4</td>
<td>Wholly-owned</td>
<td>EDP-494 (Cyclophilin Inh.) EDP-239 (NS5A Inhibitor)</td>
<td>Wholly-owned</td>
</tr>
</tbody>
</table>
Paritaprevir-Containing 3D and 2D Regimens

Wave #1: 3D (3-DAA) regimen
- BID dosing, w/wo RBV
- 3QD (once-daily) co-formulated version approval expected in U.S. 2H16

Wave #2: 2D (2-DAA) regimen
- QD dosing
- GT4 with RBV
Wave #3 New 2-DAA regimen: ABT-493 (PI) and ABT-530* (NS5A)

- Once-daily
- Fixed dose combination
- RBV-free
- Broad genotype profile
- Excellent activity against key resistance mutants

<table>
<thead>
<tr>
<th>HCV Replicon</th>
<th>Mean EC₅₀, nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT 1a</td>
<td>0.85 ± 0.15</td>
</tr>
<tr>
<td>GT 1b</td>
<td>0.94 ± 0.35</td>
</tr>
<tr>
<td>GT 2a</td>
<td>2.7 ± 1.1</td>
</tr>
<tr>
<td>GT 3a</td>
<td>1.6 ± 0.49</td>
</tr>
<tr>
<td>GT 4a</td>
<td>2.8 ± 0.41</td>
</tr>
<tr>
<td>GT 6a</td>
<td>0.86 ± 0.11</td>
</tr>
</tbody>
</table>

*AbbVie's new NS5A inhibitor

Ng, et.al, CROI, Mar. 4, 2014
<table>
<thead>
<tr>
<th>Patient Profile/Study</th>
<th>Treatment Duration</th>
<th>SVR\textsubscript{12} Rates ITT</th>
<th>Virologic Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT1 Non-cirrhotic SURVEYOR-1</td>
<td>8 weeks</td>
<td>97% (n=33/34)</td>
<td>None</td>
</tr>
<tr>
<td>GT2 Non-cirrhotic SURVEYOR-2</td>
<td>8 weeks</td>
<td>98% (n=53/54)</td>
<td>None</td>
</tr>
<tr>
<td>GT3 Non-cirrhotic SURVEYOR-2</td>
<td>8 weeks</td>
<td>97% (n=28/29)</td>
<td>None</td>
</tr>
<tr>
<td>GT3 Cirrhotic (Child-Pugh A) SURVEYOR-2</td>
<td>12 weeks</td>
<td>100% (n=24/24)</td>
<td>None</td>
</tr>
<tr>
<td>GT3 Cirrhotic (Child-Pugh A) SURVEYOR-2</td>
<td>12 weeks w/RBV</td>
<td>100% (n=24/24)</td>
<td>None</td>
</tr>
<tr>
<td>GT 4,5,6 Non-cirrhotic SURVEYOR-1</td>
<td>12 weeks</td>
<td>100% GT4 (n=22/22) GT5 (n=1/1)</td>
<td>None</td>
</tr>
</tbody>
</table>

SURVEYOR 1 & 2 Results (EASL April 2016)
ABT-493 (300mg) + ABT-530 (120mg) once daily
ABT-493: Phase 3 & Expanded Phase 2 Trials Underway

- Enrollment >2,000 patients
- Phase 3 dose ABT-493 (300mg) + ABT-530 (120/mg) fixed dose combination, once daily
- Durations of 8 and/or 12 weeks being explored in most trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDURANCE-1</td>
<td>Non-cirrhotic GT1</td>
</tr>
<tr>
<td>ENDURANCE-2</td>
<td>Non-cirrhotic GT2</td>
</tr>
<tr>
<td>ENDURANCE-3</td>
<td>Non-cirrhotic GT3</td>
</tr>
<tr>
<td>ENDURANCE-4</td>
<td>Non-cirrhotic GT4,5,6</td>
</tr>
<tr>
<td>SURVEYOR-2</td>
<td>Cirrhotic* GT3</td>
</tr>
<tr>
<td>EXPEDITION-1</td>
<td>Cirrhotic* GT1,2,4-6</td>
</tr>
<tr>
<td>EXPEDITION-2</td>
<td>HCV/HIV GT1-6</td>
</tr>
<tr>
<td>EXPEDITION-4</td>
<td>Renal Impair. GT1-6</td>
</tr>
<tr>
<td>CERTAIN-1</td>
<td>GT1-6 (Japan)</td>
</tr>
<tr>
<td>CERTAIN-2</td>
<td>GT2 (Japan)</td>
</tr>
<tr>
<td>MAGELLAN-1</td>
<td>Prior DAA failures</td>
</tr>
<tr>
<td>MAGELLAN-2</td>
<td>Liver/Kidney transplant</td>
</tr>
</tbody>
</table>

*Child Pugh A cirrhotic patients
Goal: Create combo using high resistance barrier HCV agents and target RAVs, DAA failures, and other hard-to-treat virus / patient populations

• Initial focus: cyclophilin / nuc polymerase inhibitor combo
 - high resistance barrier mechanisms make both classes attractive

• Most expedient path is to complete Ph1 and single agent POC with cyclophilin inhibitor EDP-494, then seek external development-stage Nuc for combination studies

• Add NS5A EDP-239, if needed, for additional antiviral pressure
Cyclophilin Inhibitor EDP-494 is Uniformly Active Against **NS5A RAVs**

- Also uniformly active against NS5B RAVs (Nuc and Non-Nuc) and NS3 RAVs
• Host Targeted Antiviral (HTA) with high barrier to resistance

• Pan-genotypic activity
 - Excellent nM potency against GT1-6 replicons
 - Maintains potency against DAA RAVs (NS5A, NS5B, and PI RAVs)
 - Additive to synergistic with DAAs (NS5A, NS5B, and PI inhibitors)

• Low potential for DDI via CYP450 inhibition and induction

• QD dosing potential

• Next steps:
 - Complete Ph1
 - Initiate single agent POC in GT1 & GT3
Virology & Liver Disease Focus Areas

- HCV
- NASH /PBC
- HBV
- RSV
Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH)

- Number one cause of liver disease in Western Countries
- NAFLD: excessive fat (triglyceride) accumulation in the liver (steatosis)
- A subgroup of NAFLD patients has liver cell injury and inflammation in addition to excessive fat (steatohepatitis), i.e. NASH
- NASH is associated with the metabolic syndrome – diseases related to type 2 diabetes, insulin resistance, obesity, hyperlipidemia, and hypertension
- While NAFLD does not correlate with short-term morbidity or mortality, progression to NASH dramatically increases risks of cirrhosis, liver failure, and hepatocellular carcinoma

Stages of Liver Injury (NIDDK)

- Fatty liver: Deposits of fat cause liver enlargement.
- Liver fibrosis: Scar tissue forms. More liver cell injury occurs.
- Cirrhosis: Scar tissue makes liver hard and unable to work properly.
Primary Biliary Cholangitis (PBC)

- Bile is a digestive liquid made in the liver that travels through bile ducts to the small intestine, where it helps in digestion.

- PBC is a chronic inflammatory liver disease that slowly destroys bile ducts, causing bile to remain in the liver, leading to liver cell damage and cirrhosis.

- As cirrhosis progresses and liver scar tissue increases, the liver loses its ability to function, leading to potential liver failure, liver transplantation, or hepatocellular carcinoma.
NASH and PBC Potential Markets

NASH
- Currently no approved therapies
- US prevalence estimated to be 3%-5% (~9 to 15 million)
 - 20% of whom likely to develop cirrhosis (Rinella, Hepatology, 2011)
- Patient pool size may rival HCV
- Prevalence of NASH likely to increase due to increase in underlying causes, e.g. obesity

PBC
- One approved PBC therapy (ursadiol); only 50% effective
- Estimated US incidence: 4.5 cases for women and 0.7 cases for men per 100,000 population
- Significant potential add-on value beyond NASH
Enanta’s Approach to NASH and PBC—Agonists of Farnesoid X Receptor (FXR)

- FXR is a nuclear receptor and main regulator of bile acid levels in liver and small intestine
- FXR responds to bile acids by regulating transcription of key enzymes and transporters
- FXR agonists have ameliorated a number of the pathologies in NASH and PBC, including an effect on fibrosis
- Clinical validation has been achieved in NASH and PBC with the FXR agonist 6-ECDCA (OCA)

Matsubara *Mol Cell Endocrinol* 2013

Goal: Initiate clinical studies in 2H 2016
EDP-305 is a Potent and Selective FXR Agonist

Chimeric FXR activation (CHO cells)

<table>
<thead>
<tr>
<th></th>
<th>EDP-305</th>
<th>OCA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>24 nM</td>
<td>530 nM</td>
</tr>
<tr>
<td>Efficacy</td>
<td>312%</td>
<td>279%</td>
</tr>
</tbody>
</table>

* OCA: Obeticholic acid

EDP-305 Nuclear Receptor Selectivity

TGR5 (bile acid receptor)	EDP-305
EC50 | 4,300 nM
Efficacy | 20%
FXR-mediated Regulation of Bile Acid Synthesis & Lipid Metabolism

Modica S. et al., Nuclear Receptor Signaling (2010), 8, 1-28
EDP-305 Shows a Stronger Effect than OCA on FXR-Dependent Gene Expression in Human Hepatocytes

Induces the small heterodimer partner (SHP) expression

Represses cytochrome P450 7A1 (CYP7A1) expression

* Indicates a statistically difference from OCA
EDP-305 Effects on FXR-dependent Gene Expression Translate into Potent \textit{In Vivo} Activity

Induces Shp expression

![Graph showing induced Shp expression with EDP-305 at different doses compared to control and OCA.](image1)

Represses Cyp7a1 expression

![Graph showing repressed Cyp7a1 expression with EDP-305 at different doses compared to control and OCA.](image2)

Signature gene expression in mouse liver (q.d. dosing x 5 days)

* Indicates a statistical difference from OCA
Indicates a statistical difference from control
STAM™ Mouse Model for NASH

1st hit
(low dose STZ injection)

STZ: streptozotocin

<table>
<thead>
<tr>
<th>STAM mouse model</th>
<th>0 w</th>
<th>Low dose STZ injection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 – 10 w</td>
<td>High fat diet</td>
</tr>
<tr>
<td></td>
<td>5 w</td>
<td>Fatty liver evident</td>
</tr>
<tr>
<td></td>
<td>7 w</td>
<td>NASH evident</td>
</tr>
<tr>
<td></td>
<td>9 w</td>
<td>Fibrosis evident</td>
</tr>
<tr>
<td></td>
<td>10 w</td>
<td>End pt, NAS score</td>
</tr>
</tbody>
</table>

Continuous 2nd hit
(High Fat Diet, HFD)

- **HFD + Vehicle**
 - 4 weeks

- **HFD + EDP-305**
 - 3 mg/kg/day
 - 4 weeks

- **HFD + EDP-305**
 - 10 mg/kg/day
 - 4 weeks

- **HFD + OCA**
 - 10 mg/kg/day
 - 4 weeks

NAS
(NAFLD Activity Score)
EDP-305 vs OCA in STAM™ Mouse Model

<table>
<thead>
<tr>
<th>Drug</th>
<th>mg/kg/d</th>
<th>n</th>
<th>Hepatocyte Ballooning Score</th>
<th>NAFLD Activity Score (NAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>* p<0.05</td>
<td>* p<0.05</td>
</tr>
<tr>
<td>Control</td>
<td>--</td>
<td>7</td>
<td>1.9</td>
<td>5.3</td>
</tr>
<tr>
<td>EDP-305</td>
<td>3</td>
<td>7</td>
<td>1.1</td>
<td>3.7*</td>
</tr>
<tr>
<td>EDP-305</td>
<td>10</td>
<td>8</td>
<td>0.75*</td>
<td>3.8*</td>
</tr>
<tr>
<td>OCA</td>
<td>10</td>
<td>8</td>
<td>1.1</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Graphs:
- **Hepatocyte Ballooning Score:**
 - Control: n.s.
 - EDP-305 low: p<0.05
 - EDP-305 high: n.s.
 - OCA: n.s.

- **NAFLD Activity Score (NAS):**
 - Control: n.s.
 - EDP-305 low: p<0.05
 - EDP-305 high: n.s.
 - OCA: p<0.05
FXR Agonist EDP-305: Summary

- Potent FXR receptor agonist activity vs OCA
- Highly selective for FXR vs other nuclear receptors and vs TGR5 receptor
- Potent and differentiated effects on FXR-dependent gene expression vs OCA
 - human hepatocytes
 - *in vivo* mouse model
- Improvement in hepatocyte ballooning and overall NAFLD Activity Score vs OCA in *in vivo* NASH model
- EDP-305 nominated as a development candidate
- On track to initiate clinical trials in 2H 2016

* Source: AbbVie
Virology & Liver Disease Focus Areas

- HCV
- NASH/PBC
- HBV
- RSV
HBV Background

- Potentially life-threatening liver infection caused by the hepatitis B virus
- Current treatments rarely give true cures
 - **Interferon** gives better results (~10%), but with side effects
 - **RT inhibitors** very effective at reducing viral load, but offer very low cure rates (1% or lower) and must be taken for life to improve cirrhosis or HCC outcomes
- Prevalence estimates
 - US: ~550,000 - 2 million
 - US + Japan + major EU populations: ~4.9 million
 - Worldwide: ~240 million
- Estimated 15-25% of patients with chronic HBV infection will develop chronic liver diseases including cirrhosis, HCC, or liver decompensation

Sources: WHO, CDC, Datamonitor
Respiratory Syncytial Virus (RSV)

- Negative-sense, single-stranded RNA virus of family Paramyxoviridae
- Most common cause of bronchiolitis (inflammation of the small airways in the lung) and pneumonia in children <1 year old in the U.S.
- Each year, 75,000 to 125,000 children in this age group are hospitalized due to RSV infection (most < 6 months old)
- Almost all children have had an RSV infection by age 2
- When infants/children are exposed to RSV for first time, 25% to 40% have signs or symptoms of bronchiolitis or pneumonia
- Adults with compromised immune systems and those age 65+ are also at increased risk of severe disease
- No safe and effective treatments

Source: CDC
HBV & RSV Programs: Update

• HBV: Initial focus on Core Inhibitors
 - Clinical validation (Novira)
 - Exploring additional mechanisms with goal of a functional cure

• RSV: Initial focus on Non-Fusion Inhibitors
 - Potential to be effective at later stage of infection

• Pre-clinical leads and IP activity in both programs

• GOAL: Initiate clinical studies with at least one program in 2017
Financial Highlights

<table>
<thead>
<tr>
<th></th>
<th>Fiscal Year Ended Sept. 30, 2015</th>
<th>Fiscal 2Q16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Revenues</td>
<td>160.9*</td>
<td>$13.0</td>
</tr>
<tr>
<td>R&D Expenses</td>
<td>$23.2</td>
<td>$9.1</td>
</tr>
<tr>
<td>G&A Expenses</td>
<td>$13.5</td>
<td>$4.4</td>
</tr>
<tr>
<td>Net Income (loss)</td>
<td>$79.0</td>
<td>$(1.6)</td>
</tr>
<tr>
<td>EPS (per diluted share)</td>
<td>$4.09</td>
<td>$(0.09)</td>
</tr>
</tbody>
</table>

Balance Sheet

<table>
<thead>
<tr>
<th></th>
<th>Fiscal Year Ended Sept. 30, 2015</th>
<th>Fiscal 2Q16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and Cash Equivalents</td>
<td>$209.4</td>
<td>$245.6</td>
</tr>
</tbody>
</table>

* Includes $125M in payment earned from AbbVie for U.S. and EU commercialization regulatory approvals.
Financial Summary

• Cash as of March 31, 2016: Approx. $246M, no debt
• Double-digit royalties on allocated paritaprevir sales
• Financial opportunity from ABT-493
 - targeted approval 2017*
 - up to $80M in regulatory approval milestone payments
 - additional double-digit royalty opportunity

* Source: AbbVie
Key 2016 Catalysts

• **Paritaprevir**: Ongoing royalties from Viekira®, Viekirax™, and Technivie® *(AbbVie)*

• **ABT-493**: Data from Ph3 trials on pan-genotypic HCV program starting in 4Q16, targeting 2017 approval *(AbbVie)*

• **Cyclophilin inhib. EDP-494**: Complete Ph1 and initiate POC clinical studies in GT1 & GT3 *(3Q16)*

• **FXR agonist EDP-305 for NASH / PBC**: Initiate Ph1 *(2H16)*

• **HBV and RSV programs**: Advance leads with goal of 2017 Ph1 start in at least one program