This presentation contains forward looking statements including, but not limited to, statements concerning the outcome or success of DBV’s clinical trials; its ability to successfully gain regulatory approvals and commercialize products; its ability to successfully advance its pipeline of product candidates; the rate and degree of market acceptance of its products; and its ability to develop sales and marketing capabilities. Forward looking statements are subject to a number of risks, uncertainties and assumptions. Moreover, DBV operates in a very competitive and rapidly changing environment. New risks emerge from time to time. It is not possible for DBV’s management to predict all risks, nor can DBV assess the impact of all factors on its business or the extent to which any factor, or combination of factors, may cause actual results to differ materially from those contained in any forward looking statements it may make. In light of these risks, uncertainties and assumptions, the forward looking events and circumstances discussed in this presentation may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward looking statements. You should not rely upon forward looking statements as predictions of future events. Although DBV believes that the expectations reflected in the forward looking statements are reasonable, it cannot guarantee that the future results, levels of activity, performance or events and circumstances reflected in the forward looking statements will be achieved or occur. Moreover, except as required by law, neither DBV nor any other person assumes responsibility for the accuracy and completeness of the forward looking statements. Forward looking statements in this presentation represent DBV’s views only as of the date of this presentation. DBV undertakes no obligation to update or review any forward looking statement, whether as a result of new information, future developments or otherwise, except as required by law.
DBV Technologies
At a Glance

Creator of Epicutaneous Immunotherapy delivered via Viaskin
- Novel epicutaneous Viaskin patch technology
- Offers a potential non-invasive, well-tolerated treatment
- Suitable for pediatric patients

Focused on becoming the leader in developing & commercializing food allergies treatments
- Proof of concept established in large Phase IIb trial
- Lead product candidate for peanut allergy, large unmet medical need
- Second product Viaskin Milk currently in phase II and Viaskin Egg in pre-clinical

Phase IIb results for Viaskin Peanut established regulatory pathway
- Primary endpoint met
- Favorable safety profile and strong patient compliance
- FDA Breakthrough Therapy Designation in children; EMA Positive Opinion on PIP
- Pivotal Phase III in 330 children (4-11) initiated in 4Q 2015

Broad platform with potential use in vaccines, autoimmune & inflammatory diseases

Full commercial rights to all pipeline candidates retained
Product Candidates: Leveraging our Platform Technology

Viaskin In and Beyond Food Allergies

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>INDICATION</th>
<th>COMMERCIAL RIGHTS</th>
<th>DEVELOPMENT STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viaskin Peanut</td>
<td>Peanut Allergy</td>
<td>DBV Worldwide</td>
<td>DISCOVERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FDA Breakthrough*</td>
</tr>
<tr>
<td>Viaskin Milk</td>
<td>Cow’s Milk Protein Allergy</td>
<td>DBV Worldwide</td>
<td>DISCOVERY</td>
</tr>
<tr>
<td>Viaskin Egg</td>
<td>Hen’s Egg Allergy</td>
<td>DBV Worldwide</td>
<td>DISCOVERY</td>
</tr>
<tr>
<td>Allergic Diseases</td>
<td>Eosinophilic Esophagitis</td>
<td>DBV Worldwide</td>
<td>DISCOVERY</td>
</tr>
<tr>
<td>Vaccines</td>
<td>Pertussis boost</td>
<td>DBV Worldwide</td>
<td>DISCOVERY</td>
</tr>
</tbody>
</table>

US FDA Breakthrough Therapy Designation in children
Despite Increasing Awareness and Prevalence
No Treatment Available in Food Allergy

High unmet medical need

- 50% increase in prevalence among children in the US (1997-2011)
- 1 in 13 children has a food allergy
- Most prevalent food allergies to peanut and milk

Avoidance is not enough

- ~150 deaths per year in the US
- Most deaths occur in patients who are aware of their allergy
- Every 3 mins, an allergic reactions leads patient to ER
- 50% of children experience accidental ingestion of traces within 5 years, 75% within 10 years

Need for a safe and convenient treatment

- No therapy available
- Only option is avoidance
- Goal is to increase protection and to reduce the risk of anaphylactic reaction in case of accidental exposure
- Other immunotherapy developments have failed due to safety concerns
Epicutaneous Immunotherapy

- EPIT delivers antigen through the skin targeting the APC Langerhans cells
- Langerhans cells capture antigen and migrate to lymph node to activate immune system
- Antigen does not enter the bloodstream

Our Viaskin Technology
A Novel Potential Immunotherapy

Viaskin provides allergenic information to immune system without entering the blood stream.
The Viaskin* Technology
Patient-Friendly and Self-Administable

1 Viaskin per day, ready-to-use and patient friendly

Self-applied to intact skin on the arm or back

Non-invasive, safe, well-tolerated

Potential treatment for adults and children

Patented and fully-owned manufacturing process

Expected to be prescription product

*Under evaluation in clinical trials for peanut and milk allergies; statements based on trial results observed to date.
Drug Development for Food Allergies
Pharmaceutical Plans Designed for Approval: Viaskin Peanut

Core Development Plan
- Phase I
 - 100 patients
- Phase IIb VİPES OLFUS-VİPES
- Phase III
 - 330 patients
- Goal: Registration

Academic Collaborations
- Phase IIa Arachild
 - 54 patients
- Phase II CoFAR 6
 - 75 patients
- Proof of Concept
- Biomarkers and MoA
Phase IIb - VIPES & OLFUS-VIPES
Largest Peanut Allergy Trial Ever Conducted

VIPES Phase IIb
221 stratified patients, 22 centers in US, Canada, France, Poland, and Netherlands

Study Population
- **Highly allergic patients**
 - > 0.7 kU/L peanut-specific IgE and ≥ 8 mm SPT wheal
 - Peanut reactive dose at M0 ≤ 300 mg peanut protein (ie. approx 1 peanut)

VIPES & OLFUS Efficacy
- **Primary endpoint at M12, M24 and M36**
 - ≥ 1000 mg reactive dose OR
 - ≥ 10-fold of the initial reactive dose
- **Main secondary endpoints:** CRD*, changes in peanut sIgE and sIgG4

*CRD: Cumulative Reactive Dose at Food Challenge
221 subjects randomized
- 113 Children (6-11 years)
- 73 Adolescents (12-17 years)
- 35 Adults (18-55 years)

Highly allergic subjects
- Children = 30 mg
- Adolescents & Adults = 100 mg

Medical History of Patients
- Asthma: 130 (58.8%)
- Eczema/Atopic Dermatitis: 114 (51.6%)
- Allergic Rhinitis: 96 (43.4%)
- Polyallergic: 183 (82.8%)
VIPES Highlights Viaskin’s Safety Profile & Ease of Use

High Compliance Rate, Low Drop-Outs

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>50 µg</th>
<th>100 µg</th>
<th>250 µg</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=</td>
<td>56</td>
<td>53</td>
<td>56</td>
<td>56</td>
<td>221</td>
</tr>
<tr>
<td>Overall compliance (%)</td>
<td>Median</td>
<td>97.0</td>
<td>96.9</td>
<td>97.8</td>
<td>98.7</td>
</tr>
<tr>
<td>Drop-out not related to Viaskin</td>
<td>n (%)</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(3.6)</td>
<td>(3.8)</td>
<td>(10.7)</td>
<td>(3.6)</td>
<td>(5.4)</td>
</tr>
<tr>
<td>Drop-out related to Viaskin</td>
<td>n (%)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
<td>(0.0)</td>
<td>(1.8)</td>
<td>(1.8)</td>
<td>(0.9)</td>
</tr>
</tbody>
</table>
Good Safety Profile
Observed in VIPES

No use of epinephrine related to Viaskin Peanut application

20 SAEs, none related to Viaskin Peanut
- Related to study procedure: 14 SAEs during DBPCFCs (anaphylaxis to peanut challenge)
- Others
 - 1 Allergic reaction due to fish consumption
 - 3 SAEs (moderate anaphylaxis) after accidental consumption of food-containing peanut
 - 1 respiratory distress case
 - 1 psychiatric case

2 withdrawals due to related adverse events (ie. dermatitis)

Most frequent related AEs
- Local cutaneous reaction >90% of subjects mainly mild and moderate (50% with a duration < 2 months)
Primary Efficacy Endpoint Met
Identified Viaskin 250 µg as Phase III Dose

Response rate across doses after 12 months

- Placebo: 25.0% (n = 56)
- 50 µg: 45.3% (n = 53)
- 100 µg: 41.1% (n = 56)
- 250 µg: 50.0% (n = 56)

p-values:
- Placebo vs. 50 µg: p = 0.0292
- Placebo vs. 100 µg: p = 0.0108
- Placebo vs. 250 µg: p = 0.1074

(p= 0.0108)
Children Age 6 to 11 Years
Statistically Significant in all three Doses

Response rate in children across doses after 12 months

<table>
<thead>
<tr>
<th>Dose</th>
<th>% of Responders (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>19.4% (95% CI)</td>
<td></td>
</tr>
<tr>
<td>50 µg</td>
<td>57.1% (95% CI)</td>
<td>0.0076</td>
</tr>
<tr>
<td>100 µg</td>
<td>46.2% (95% CI)</td>
<td>0.0453</td>
</tr>
<tr>
<td>250 µg</td>
<td>53.6% (95% CI)</td>
<td>0.0035</td>
</tr>
</tbody>
</table>
VIPES: Children Age 6 to 11 Years
Clear Dose Response, Clear Magnitude of Effect

Increase in CRD in children after 12 months (Mean and Median)*

<table>
<thead>
<tr>
<th>Dose</th>
<th>Placebo (n=30)</th>
<th>50 μg (n=28)</th>
<th>100 μg (n=24)</th>
<th>250 μg (n=28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mg</td>
<td>Median = 0.0</td>
<td>Median = 135.0</td>
<td>Median = 214.5</td>
<td></td>
</tr>
<tr>
<td>1,000 mg</td>
<td>Median = 1121.0 mg</td>
<td>471.2 mg</td>
<td>617.5 mg</td>
<td>1,121.0 mg</td>
</tr>
<tr>
<td>1,500 mg</td>
<td>Median = 0.0</td>
<td>Median = 135.0</td>
<td>Median = 214.5</td>
<td></td>
</tr>
<tr>
<td>2,000 mg</td>
<td>Median = 0.0</td>
<td>Median = 135.0</td>
<td>Median = 214.5</td>
<td></td>
</tr>
</tbody>
</table>

* Excluding missing data

4-5 peanuts
Children Age 6 to 11 Years
Immunological Changes Supports Treatment Effect

Peanut-specific IgE (kU/L)

Peanut-specific IgG4 (mg/L)

- Viaskin Peanut 250 μg, n=28
- Viaskin Peanut 100 μg, n=26
- Viaskin Peanut 50 μg, n=28
- Placebo, n=31
OLFUS-VIPES Results
Patient Motivation Remains Strong, High Tolerability Observed

171 patients enrolled (83% rollover rate from VIPES)

- 97 children (ages 6-11 years)
 - 7.2% dropout (7/97)
- 74 adolescents & adults (ages 12-55 years)
 - 20.3% (15/74)

Results support Viaskin Peanut’s long-term safety and tolerability profile

- No drug-related use of epinephrine
- No SAEs related to Viaskin Peanut

Patient treatment compliance remains strong after 2 years of treatment

- 96% median overall compliance rate observed
OLFUS-VIPES Results, Ages 6-11
Significant Increase in Peanut Consumption and Treatment Benefit after 24 months of Viaskin Peanut 250 μg

Response Rate at M12 and M24

<table>
<thead>
<tr>
<th>Treatment</th>
<th>M12 Response Rate</th>
<th>M24 Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viaskin Peanut 250 μg</td>
<td>57.1% (12/21)</td>
<td>80.0% (16/20)</td>
</tr>
</tbody>
</table>

OLFUS Patients Change in CRD**

**Excluding missing data

* 1 child lost to follow-up
OLFUS-VIPES Results, Ages 6-11

Serological Markers Reflect Strengthening of Response

Median relative change = $100 \times \frac{\text{Month } xx - \text{Baseline}}{\text{Baseline}}$
CoFAR6 (Phase II)
Efficacy and Safety – NIAID sponsored

Defined Endpoints
- **Primary endpoint:** Proportion with a treatment success (desensitization) following 52 weeks of blinded treatment
 - Passing a 5044 mg OFC to peanut protein at week 52 OR
 - ≥ 10-fold increase in the successfully consumed dose (SCD) of peanut protein at week 52 compared to baseline OFC
- **Secondary endpoints:**
 - Comparison of VP 100 mg vs VP 250 mg doses at week 52
 - Desensitization and sustained unresponsiveness at week 130
 - Incidence of all adverse events
 - Changes in immune mechanistic studies

CoFAR6 (Phase II)
Randomized, double-blind, placebo controlled
75 patients; 4-25 years of age; Confirmed peanut allergy by SPT/sIgE levels

Randomization
1:1:1
- Enrollment N=75
- Entry OFC positive to cumulative dose of <1044 mg peanut protein

Week 52
5044 mg OFC
- 250 µg Peanut EPIT
- 100 µg Peanut EPIT
- Placebo

Week 130
5044 mg OFC [End of study]
- 250 µg Peanut EPIT

Jones S et al. (in preparation); AAAAI Session 1201)
CoFAR6 Trial: Primary Endpoint Was Met
Findings Reaffirm VIPES Results

- No SAEs or Epinephrine due to drug
- 96% compliance
- Primary endpoint met (p=0.003)
- Significant age by treatment interaction
 - ~1/3 of children treated with 250 µg were able to tolerate > 1,000 mg protein (~4 peanuts)
- Significant increase in IgG4

Jones S et al. (in preparation; AAAAI Session 1201)
Clinical Evidence of Viaskin Peanut Shows Promising Therapeutic Value

- **Extensively studied:** 450 patients randomized in 5 clinical trials
- **Excellent safety** profile has been demonstrated in multiple clinical trials
- **Efficacy demonstrated:** Primary endpoint met in phase II trials
- **Convenient:** Single dose, very few dropouts
- For all populations but well suited to **treat children** in particular

Strong evolving evidence for the desensitization of food allergies
PEPITES: Pivotal Phase III Global Trial
Recruitment Ongoing

PEPITES Phase III global pivotal trial
330 peanut allergic children (4-11)
US, Canada, Australia, Germany, Ireland

Study Population
- Highly allergic patients
 - > 0.7 kU/L peanut-specific IgE and ≥ 8 mm SPT* wheal
 - Peanut reactive dose at M0 ≤ 300 mg peanut protein (ie. approx 1 peanut)

Efficacy Endpoints
- **Primary endpoint at M12**
 Treatment responders (%) in active group compared to placebo at DBPCFC:
 - For subjects with a M0 ED ≤ 10mg: responder if ED ≥ 300 mg at M12
 - For subjects with a M0 ED > 10mg: if ED ≥ 1,000 mg at M12
- **Main secondary endpoints**: CRD**, LS Mean, changes in peanut slgE and slgG4

* SPT: Skin Prick Test
** CRD: Cumulative Reactive Dose at Food Challenge
VIPES Post Hoc Analysis Using PEPITES Responder Definition
Decreasing Placebo Rate to Increase Treatment Magnitude

VIPES Children - Viaskin 250 µg at M12

VIPES Response Rate using the PEPITES Response Criteria

<table>
<thead>
<tr>
<th>Placebo</th>
<th>250 µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of responders (95% CI)</td>
<td>% of responders (95% CI)</td>
</tr>
<tr>
<td>n = 31</td>
<td>n = 28</td>
</tr>
<tr>
<td>Placebo</td>
<td>19.4%</td>
</tr>
<tr>
<td>250 µg</td>
<td>6.5%</td>
</tr>
</tbody>
</table>

p = 0.0076 for *p = 0.0007*
Viaskin Milk: MILES Phase II
Recruitment Ongoing

Study Population
- 2-17 years old
- Highly sensitive to milk allergy (positive milk-specific IgE and SPT): reactive dose at baseline (M0) ≤300 mg cow’s milk protein (‘CMP’) (i.e. ~ ≤9.4 mL of CMP)

Efficacy Endpoints
- Primary endpoints: ≥ 10-fold increase in CRD at M12 and at least 144 mg of CMP **OR**
 CRD ≥ 1,444 mg at M12
- Main secondary endpoints include change from baseline in IgE, IgG4
Leveraging the Viaskin Immunotherapy Platform

Potential Product Candidates & Indications

<table>
<thead>
<tr>
<th>Category</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergies</td>
<td>- Peanut</td>
</tr>
<tr>
<td></td>
<td>- Milk</td>
</tr>
<tr>
<td></td>
<td>- Hen’s Egg</td>
</tr>
<tr>
<td>Allergic Diseases</td>
<td>- EoE</td>
</tr>
<tr>
<td>Prevention</td>
<td>- Allergic march</td>
</tr>
<tr>
<td>Autoimmune</td>
<td>- Asthma prevention</td>
</tr>
<tr>
<td></td>
<td>- r. Hemophilia A</td>
</tr>
<tr>
<td></td>
<td>- Diabetes type I</td>
</tr>
<tr>
<td>Inflammatory</td>
<td>- IBD</td>
</tr>
<tr>
<td>Vaccines</td>
<td>- Pertussis boost</td>
</tr>
<tr>
<td></td>
<td>- RSV</td>
</tr>
</tbody>
</table>
Where we are Today
Upcoming Milestones

1H 2016
✓ Full OLFUS-VIPES year-2 study results of Viaskin Peanut presented at AAAAI 2016
✓ Multiple EPIT presentations at AAAAI 2016
✓ CoFAR6 study results of Viaskin Peanut
 o Multiple EAACI 2016 scientific and clinical presentations
 o Launch of Viaskin Pertussis pilot trial (PoC)
 o Viaskin Pertussis Pilot trial results expected

2H 2016
 o OLFUS-VIPES year-3 study results of Viaskin Peanut expected
 o Completion of recruitment for PEPITES Phase III study of Viaskin Peanut
 o Completion of recruitment for MILES Phase IIb study of Viaskin Milk
 o Completion of recruitment for SMILEE Phase IIb study of Viaskin Milk for EoE
 o OLFUS-VIPES “off-treatment” results expected for Viaskin Peanut

2017
 o PEPITES Phase III results for Viaskin Peanut expected
 o MILES Phase IIb results for Viaskin Milk expected
Corporate Profile
Building a Biopharmaceutical Franchise for EPIT

Building the EPIT Company

- **Well capitalized:** €324m cash @ Dec. 31, 2015

- **Long-term investors:** top shareholders include Baker Brothers, Janus Capital, Fidelity, Oppenheimer Funds, Alliance Bernstein, Invesco, Jennison, and other top funds

- **Ongoing commercial build-out:** to support launch and sales of food allergy products

- **Delivering shareholder value:** commercial focus, with active clinical development and R&D strategy

Key Corporate Facts

- Founded in 2002 by Dr. Pierre-Henri Benhamou, Bertrand Dupont & Dr. Christophe Dupont

- Global headquarters in Paris, France

- US headquarters in New York, NY

- Paris Euronext: DBV

- NASDAQ Global Select: DBVT

- 101 full time employees

- Dr. Hugh Sampson, world-renowned KOL, joined as Chief Scientific Officer on November 2015

* Includes 2 entities of BPI France

As of Dec. 31 2015

- Baker Brothers 14.9%
- BPI France* 9.2%
- Insiders 7.5%
- Free Float 68.4%
Measuring Efficacy
Double-Blind Placebo-Controlled Food Challenge in VIPES

- **Standardized challenge matrix**: chocolate dessert base formula
- **Standardized** semi-logarithmic increase of peanut protein doses (DBPCFC as per PRACTALL)
- **Allergic symptoms are graded** from a standardized published protocol
- **Challenge stopped by clear objective symptoms**

Objective symptoms

<table>
<thead>
<tr>
<th>Dosage</th>
<th>1 mg</th>
<th>3 mg</th>
<th>10 mg</th>
<th>30 mg</th>
<th>100 mg</th>
<th>300 mg</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Erythematous rash : % area involved</td>
<td>0</td>
</tr>
<tr>
<td>B. Pruritus</td>
<td>1</td>
</tr>
<tr>
<td>C. Urticaria-Angioedema</td>
<td>2</td>
</tr>
<tr>
<td>D. Rash</td>
<td>3</td>
</tr>
<tr>
<td>A. Sneezing-Itching</td>
<td>0</td>
</tr>
<tr>
<td>B. Nasal Congestion</td>
<td>1</td>
</tr>
<tr>
<td>C. Rhinorrhea</td>
<td>2</td>
</tr>
<tr>
<td>D. Larynggeal</td>
<td>3</td>
</tr>
<tr>
<td>A. Wheezing</td>
<td>0</td>
</tr>
<tr>
<td>A. Subjective Complaints</td>
<td>1</td>
</tr>
<tr>
<td>Itchy mouth</td>
<td>2</td>
</tr>
<tr>
<td>Itchy Throat</td>
<td>3</td>
</tr>
<tr>
<td>Nausea</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>1</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>2</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3</td>
</tr>
<tr>
<td>Normal heart rate → bradycardia</td>
<td>0</td>
</tr>
</tbody>
</table>

Subjective symptoms

- **I. SKIN**
 - A. Erythematous rash : % area involved
 - B. Pruritus
 - C. Urticaria-Angioedema
 - D. Rash

- **II. UPPER RESPIRATORY**
 - A. Sneezing-Itching
 - B. Nasal Congestion
 - C. Rhinorrhea
 - D. Larynggeal

- **III. LOWER RESPIRATORY**
 - A. Wheezing

- **IV. GASTROINTESTINAL**
 - A. Subjective Complaints
 - Itchy mouth
 - Itchy Throat
 - Nausea
 - Abdominal pain
 - Diarrhea
 - Vomiting

- **V. CARDIOVASCULAR**
 - Normal heart rate → bradycardia

1 Cochrane et al, Allergy 2012
2 Double-Blind, Placebo-Controlled Food Challenge
3 Sampson et al, JACI 2012
4 Nowak-Wegrzyn et al, JACI 2009
OLFUS-VIPES Results, Ages 6-11
New 12-Month Data Confirms VIPES Results

Excluding missing data

* 1 child unwilling to continue
VIPES: Children
Increased Criteria Stringency Supports Strong Efficacy

Proportion of strong responders in children (both x10 and 1,000 mg increase in ED)

<table>
<thead>
<tr>
<th>Group</th>
<th>% of responders (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>50 µg</td>
<td>17.9%</td>
<td>p = 0.0196</td>
</tr>
<tr>
<td>100 µg</td>
<td>26.9%</td>
<td>p = 0.0025</td>
</tr>
<tr>
<td>250 µg</td>
<td>32.1%</td>
<td>p = 0.0005</td>
</tr>
</tbody>
</table>

of children with no objective symptoms during highest dose of M12 DBPCFC
- Placebo: 0
- 50 µg: 0
- 100 µg: 1
- 250 µg: 4
Subjects aged 12-55 response rate across doses

- Placebo: 32.0% (n = 25)
- 50 µg: 32.0% (n = 25)
- 100 µg: 36.7% (n = 30)
- 250 µg: 46.4% (n = 28)

VIPES: Adolescents & Adults
High Placebo Response Rate Distorts Analysis

- Placebo: 32.0% (95% CI)
- 50 µg: 32.0% (95% CI)
- 100 µg: 36.7% (95% CI)
- 250 µg: 46.4% (95% CI)

p-values:
- Placebo vs 50 µg: p = 0.3998
- Placebo vs 100 µg: p = 0.7812
- Placebo vs 250 µg: p = 1.0000
VIPES: Adolescents & Adults

Changes from Baseline CRD Indicate Dose Response Trend

Subjects aged 12-55 increase in baseline CRD at 12 months across doses

- Placebo: Median = 0.0, n = 25
- 50 μg: Median = 10.0, n = 25
- 100 μg: Median = 30.0, n = 30
- 250 μg: Median = 335.0, n = 28

Mean CRD increase (95% CI)
VIPES: Adolescents & Adults
Immunological Changes Support Dose Response Trend

Peanut-specific IgE (kU/L)

Peanut-specific IgG4 (mg/L)

- Viaskin Peanut 250 µg, n=28
- Viaskin Peanut 100 µg, n=30
- Viaskin Peanut 50 µg, n=25
- Placebo, n=25
Cow's Milk EPIT in Children (JACI 2010): A Pilot Trial

Active group

<table>
<thead>
<tr>
<th>OFC 1 - T0</th>
<th>OFC 2 - 3 months</th>
<th>OFC 3 - 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>67.1</td>
<td>64.6</td>
</tr>
<tr>
<td>3.6</td>
<td>25.5</td>
<td>47.1</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>0.6</td>
<td>4.1</td>
<td>6.1</td>
</tr>
<tr>
<td>0.6</td>
<td>4.1</td>
<td>6.1</td>
</tr>
<tr>
<td>0.1</td>
<td>4.1</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Placebo group

<table>
<thead>
<tr>
<th>OFC 1 - T0</th>
<th>OFC 2 - 3 months</th>
<th>OFC 3 - 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>17.1</td>
<td>27.1</td>
</tr>
<tr>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>0.7</td>
<td>0.35</td>
<td>1.6</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Volume of Milk tolerated before symptoms appear (ml)

48h application, 3/week
Nb treated pt=9, Nb placebo pt=7
3-month treatment

Dupont C et al. JACI 2010
Next Generation Allergy Treatments: Prophylaxis
JACI 2015 – Disrupting the Allergic March in Young Mice

Mondoulet et al, 2014. JACI

<table>
<thead>
<tr>
<th>D0</th>
<th>D43</th>
<th>D99</th>
<th>D127</th>
<th>D130</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSITIZATION MILK + CT (6 ig for 6 weeks)</td>
<td>IMMUNOTHERAPY</td>
<td>SENSITIZATION - PPE (IG)</td>
<td>IV CHALLENGE TO PEANUT</td>
<td></td>
</tr>
<tr>
<td>n = 10</td>
<td>EPIT 100</td>
<td>Sensitization to PPE</td>
<td>anaphylaxis measured by the drop in temperature + increase of plasma mMCP1</td>
<td></td>
</tr>
<tr>
<td>n = 10</td>
<td>Sham</td>
<td>Sensitization to PPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 10</td>
<td>Naive</td>
<td>Positive Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next Generation Allergy Treatments: Prophylaxis

JACI 2015: Anaphylaxis Results after Second Sensitization

Mondoulet et al, 2014. JACI

Sensitization to Milk/ Milk-EPIT® / Sensitization to peanut

IV challenge to peanut

Mann-Whitney non parametric test

naive vs Sham, p = 0.0159

naive vs control+, p = 0.0079

EPIT vs Sham, p = 0.0079

EPIT vs control+, p = 0.0079

naive vs EPIT, p = 0.4127
IP Protection
Method, Technology, Manufacturing Processes, & Applications

Allergy
- Eczema
- Peanut
- Allergic march
- Eosinophilic Esophagitis

Core Technology
- VIASKIN® I:
 Dry patch Architecture, electrostatic forces, adhesive crown
- VIASKIN® II:
 Chamber, Electrostatic API deposit

Manufacturing
- ELECTROSPRAY
- EPIT Immuno Rebalancing

Vaccination
- BOOST HBS Ag TH1-directed response
- CONDENSATION CHAMBER

Immune disease
- HEMOPHILIA A

Core Technology

40
Proprietary Technology
Patented and Fully-Owned Manufacturing Process

- Established GMP manufacturing process fully engineered & designed by DBV
- Deposits very small & precise quantities of API - devoid of adjuvants on Viaskin
- Stored at room temperature, providing a long shelf life
- Production capacity increase ongoing
- Sanofi is DBV’s CMO for Peanut and Milk API