Abeona Therapeutics

Working together to find a cure.

NASDAQ: ABEO
www.abeonatherapeutics.com
Safe Harbor Statement

This presentation contains certain statements that may be forward-looking within the meaning of Section 27a of the Securities Act of 1933, as amended, including statements relating to the product portfolio and pipeline and clinical programs of the company, the market opportunities for the all of the company’s products and product candidates, and the company’s goals and objectives. These statements are subject to numerous risks and uncertainties, including but not limited to the risks detailed in the Company’s Annual Report on Form 10-K for the year ended December 31, 2015, and other reports filed by the company with the Securities and Exchange Commission.

This presentation does not constitute an offer or invitation for the sale or purchase of securities or to engage in any other transaction with Abeona Therapeutics or its affiliates. The information in this presentation is not targeted at the residents of any particular country or jurisdiction and is not intended for distribution to, or use by, any person in any jurisdiction or country where such distribution or use would be contrary to local laws or regulations. The Company undertakes no obligations to make any revisions to the forward-looking statements contained in this presentation or to update them to reflect events or circumstances occurring after the date of this presentation, whether as a result of new information, future developments or otherwise.
Abeona Therapeutics

Clinical-stage Company: Delivering Therapies for Children with Rare Genetic Diseases

- **Pronunciation:** ay-bee-oh-nuh
- **Origin:** Roman Goddess thought to be the protector of children as they start out on their journey
- **Focus:** Abeona Therapeutics delivers gene therapy and plasma-based products for severe and life-threatening rare diseases

Janette and Inaki, MPS IIIA
Company Overview

Clinical-stage gene therapy company focused on rare diseases

- Sanfilippo Syndrome
 - ABO-102 (MPS IIIA): IND FDA allowance received for Phase 1/2 clinical study
 - First Patient Dosed – May 2016
 - ABO-101 (MPS IIIB): IND FDA allowance received for Phase 1/2 clinical study
 - Orphan Drug and Pediatric Rare Disease Designations from FDA
 - Nationwide Children’s Hospital Natural History Study

- Juvenile Batten
 - AAV-based gene therapy for juvenile Batten disease (CLN3)
 - World class research from Dr. Tammy L. Kielian at University of Nebraska Medical Center
 - IND enabling studies to commence in 2H 2016

- Fanconi Anemia
 - Proprietary CRISPR-Cas9 ex vivo and in vivo approaches for Fanconi anemia
 - World class research from Dr. Jakub Tolar and team at the University of Minnesota
 - IND enabling studies to commence in 2016

- Inherited COPD & Other Ultra-Orphan Proteins
 - Proprietary SDF process expands yields significantly relative to Cohn process
 - Finalize clinical program and initiate trial 2016
Rare Disease Pipeline

<table>
<thead>
<tr>
<th>Gene Therapy</th>
<th>Research</th>
<th>Preclinical</th>
<th>Phase I/II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABO-102 (scAAV-SGSH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanfilippo syndrome Type A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABO-101 (AAV-NAGLU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanfilippo syndrome Type B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABO-201 (scAAV-CLN3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juvenile Batten disease (JNCL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABO-301 (AAV-FANCC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanconi anemia (FA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRISPR-Cas9-AAV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare blood diseases TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasma Protein Therapy</th>
<th>Research</th>
<th>Preclinical</th>
<th>Phase I/II</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDF Alpha™ (alpha-1 protease inhibitor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inherited COPD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDF IVIG™ (intravenous immunoglobulin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmune, infectious, and idiopathic diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current → **Planned**
GENE THERAPY
Lysosomal Storage Diseases

Inherited mutations that cause deficits in a cell recycling center

- Enzymes in lysosomes break down sugars – cell recycling center
- Genetic defects can cause enzymes to not function properly
- Buildup in the lysosome of unbroken down sugars (GAGs)
- Class of lysosomal storage disorders (LSDs)
Routes of Administration for AAV Gene Therapies

- **Intravenous: Injection into a blood vessel**
 - Whole body delivery for treatment of multiple organs systems, including brain
 - Strong patient adoption, low safety risk
 - Abeona’s approach utilizes AAV9 for treating lysosomal storage diseases

- **Intracerebral: Direct injection into the brain**
 - Requires holes drilled into skull
 - Minimal peripheral organ delivery

- **Intrathecal: Direct injection into the spinal cord**
 - Spinal injections
 - Minimal peripheral organ delivery
AAV 1, 2, 5, 8, 9, 10 injected into CNS: Serotype makes a difference

Brain-directed injection of AAV vectors encoding green fluorescent protein gene (AAV/GFP). Approximately 2.0×10^{10} vg of AAV/GFP vectors (serotypes 1, 2, 5, 8, 9, and 10) were injected into the right striatum over a period of 5 min. Expression of GFP was analyzed using fluorescent microscopy at 2 weeks.

Single Stranded vs. Self-Complementary AAV

After 7.0×10^{12} vg of AAV9/GFP vectors were injected via tail veins of adult (7-week-old) mice; GFP images 5 weeks post administration

Systemic scAAV9 Administration Transduces the Spinal Cord

- **Self-Complementary AAV9**
- **13-months post intravenous injection of scAAV9-CLN3**
- **Demonstrates robust and uniform expression in spinal cord**
AAV9 Vectors Cross the Blood-Brain Barrier

Single, intravenous AAV9 injection used by Abeona

- Only vector to cross the Blood Brain Barrier
- Expressed in multiple nervous system cell types
- Supra-physiological enzyme expression in brain for over a year observed in animals
- Self-complementary AAV (scAAV) persists as a stable episome in non-dividing cells with transgene expression for years
- scAAV vectors are 10-100-fold more efficient than traditional single-stranded (ss) AAV vectors
- Robust, uniform expression in all areas of brain and peripheral tissues

GREEN = cells that received vector
scAAV-GFP expression in whole brain of juvenile Batten disease mouse after intravenous injection at 5 months post-injection

Global Foundation Supporters

Spain

Spain

USA

Switzerland

USA

USA

Canada

USA

Mexico

Australia
Sanfilippo Syndrome (MPS IIIB & MPS IIIA)
Sanfilippo syndrome (MPS III)

Rare Lysosomal storage disease affecting children

- **Sanfilippo syndrome (mucopolysaccharidosis (MPS) type III)**
 - Divided into four types (A to D) based on specific enzyme defect
 - IIIA - N-sulfoglucosamine sulfohydrolase (SGSH)
 - IIIB - α-N-acetylglucosaminidase (NAGLU)
 - Results in the abnormal accumulation of glycosaminoglycans (GAGs) (sugars)
 - GAGs accumulate in the brain (CNS) and body (somatic) tissues
 - Deterioration is severe, progressive and universally lethal with death by end of teens–early 20’s

- **No treatment currently available**
 - Incidence is estimated to be 1 in 70,000 births
 - Types A and B more common in North America and Europe

Abeona received FDA Allowance of IND for Phase 1/2 Clinical Study for Patients with Sanfilippo syndrome A (MPS IIIA) and B (MPS IIIB)

http://www.sophieandtom.co.uk/sophie-and-tom/
Differentiated Whole Body Approach

Abeona’s Treatment by Intravenous AAV Injection crosses blood brain barrier

- Increased enzyme activity
- Normalized GAG content
- Neuromuscular correction
- Cognitive improvements
- 100% improved survival

- 4 – 6 week old MPS III animals
- 4 – 6 month old MPS III animals
- Non-human primates (safety)
ABO-101 Enzyme Expression in MPS IIIB Mouse Brain

<table>
<thead>
<tr>
<th>Vector Dose (vg/kg)</th>
<th>AOI</th>
<th>NAGLU Activity (% of wt levels)</th>
<th>16-27 mo pi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1mo pi</td>
<td>3mo pi</td>
</tr>
<tr>
<td>1x10^{13}</td>
<td>4-6wk</td>
<td>60-560%</td>
<td>80-440%</td>
</tr>
<tr>
<td>1x10^{13}</td>
<td>4-6mo</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2x10^{13}</td>
<td>4-6wk</td>
<td>40-440%</td>
<td>50-674%</td>
</tr>
<tr>
<td>2x10^{13}</td>
<td>4-6mo</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

NAGLU expression at or above heterozygote (and often above wild-type)
Clearance of Lysosomal GAGs after single ABO-101 treatment

Normalizing GAGS for whole body improvement

- IV Delivery of ABO-101 induced clearance of lysosomal GAG storage in the CNS and somatic tissues

- **Lower** bars are better

- Demonstrates that treated IIIB mice have reduced GAG content, similar to unaffected animals, in multiple tissues compared to untreated IIIB mice (with exception of kidney)

Source: Fu et al (2011) Correction of Neurological Disease of Mucopolysaccharidosis IIIB in adult mice by rAAV9 Trans-Blood-Brain Barrier Gene Delivery, Mol. Ther 19
ABO-101 Normalizes Cognitive and Motor Function

Demonstrates normalization of cognitive and motor function after IV injection into 4-6 week old MPS IIIB mice

Morris Water Maze

Rotarod

5.0 - 5.5 months old (4 months post-injection)

Source: Fu et al (2011) Correction of Neurological Disease of Mucopolysaccharidosis IIIB in adult mice by rAAv9 Trans-Blood-Brain Barrier Gene Delivery, Mol. Ther 19
ABO-101 Normalizes Survival in MPS IIIB

Single iv infusion of ABO-101 at 4–6 weeks of age normalized the survival in MPS IIIB mice

Source: Fu et al (2011) Correction of Neurological Disease of Mucopolysaccharidosis IIIB in adult mice by rAAV9 Trans-Blood-Brain Barrier Gene Delivery, Mol. Ther 19
ABO-101 Demonstrates sustained activity in Non-human Primates

- NAGLU (MPS IIIB Enzyme) in CNS and preclinical tissue 6 months postadministration
- Brain and somatic NAGLU activity is significantly increased over normal enzyme levels 6 months post-injection despite modest decreases in peripheral serum NAGLU levels

Natural History Study

25-patient with Sanfilippo

- Enrollment complete: 25 subjects, 15 MPS IIIA and 10 MPS IIIB
- Study visits – assessments at 0, 6, and 12 months:
 - Neurocognitive (Leiter) and parental rating assessments (ABAS II)
 - Timed functional motor tests
 - Standard laboratory assessments
 - Serum/leukocyte NAGLU or SGSH activity
 - Quality of life (PedsQL)
 - Urine GAG levels
- Study visits – assessments at Baseline and 12-month assessments
 - Brain MRI (including DTI and 1H spectroscopy)
 - CSF for standard chemistries/cell counts and NAGLU or SGSH activity
- All subjects through >1 year follow up
 - Multiple patient cross-over into clinical trials

Source: Bain et al (2015) Design and Enrollment in a Natural History Study of Mucopolysaccharidosis Types IIIA and IIIB, ACMG

Mullen Scales: ALL subjects at or below a 3 year old developmental age at baseline visit, declining with age
Two Ongoing Phase 1/2 Clinical Trials: Overview

- Phase 1/2 open-label, dose-escalation clinical trials
 - ABO-102 (scAAV-SGSH) for MPS IIIA clinicaltrials.gov - NCT02716246
 - ABO-101 (AAV-NAGLU) for MPS IIIB: clinicaltrials.gov - TBD

- Each trial:
 - Low Dose: n = 3 patients
 - High Dose: n = 3-6 patients

- Three sites: United States, Spain and Australia

- Multiple global Phase 1/2 studies with n=~25 patients
Juvenile Batten Disease (JBD)
Juvenile Batten Disease
(Juvenile Neuronal Ceroid Lipofuscinosis)

Estimated incidence of 1:100,000 births

- Autosomal recessive (inherited) mutation in the CLN3 gene
- Lysosomal storage diseases accumulation of the autoflorescent ceroid lipopigments and proteins
- Initially presents as blindness, progressing to behavioral issues, sleep disturbances, seizures, cognitive loss, motor abnormalities, and premature death (late teens-early 20s)
- Neurodegeneration occurs primarily in thalamus, cortex, and hippocampus, although inclusions are observed throughout the CNS

Source: Moving towards therapies for Juvenile batten disease, Experimental Neurology, 2008
Fanconi anemia (FA)
ABO-301 for Fanconi anemia

Rare (1: 160,000) pediatric, autosomal recessive (inherited) disease

- Characterized by multiple physical abnormalities, organ defects, bone marrow failure, and a higher than normal risk of cancer—with 20 to 30 year average lifespan
 - The major function of bone marrow is to produce new blood cells. In FA, a DNA mutation renders the FANCC gene nonfunctional
 - Loss of FANCC causes patient skeletal abnormalities and leads to bone marrow failure
 - Higher rates of hematological diseases, such as acute myeloid leukemia (AML) or tumors of the head, neck, skin, gastrointestinal system, or genital tract

- ABO-301 (AAV LK19 FANCC) using CRISPR/Cas9 in vivo (delivery vector with hematopoietic tropism) demonstrates in vivo efficacy in multiple models, with no off target effects

- Next steps: Complete IND enabling pre-clinical studies; and establish safety and preliminary efficacy in human subjects

PLASMA THERAPY
Alpha-1 Antitrypsin (AAT) Deficiency

- AAT deficiency is a protein folding disease; leads to inherited COPD
- Protein folding: an unfolded polypeptide chain folds into a specific native and functional structure
- Misfolding and retention in the ER (endoplasmic reticulum) leads to aggregation in cells of synthesis

AAT Augmentation Treatment

- AAT deficiency predisposes those affected to COPD and liver disease
- AAT treatment improves morbidity (FEV_1/breathing capacity) and mortality (survival)
- First approved in 1988 as weekly i.v. infusion at 60 mg/kg
 - Four currently approved products: (Glassia® (Kamada), Aralast-NP™ (Baxter Healthcare), Prolastin-C® (Grifols), Zemaira® (CSL Behring))
- ~10K US patients are currently on AAT augmentation therapy
 - Estimated 80-100K require augmentation in US
 - ~$1 B market, CAGR 20%
 - Reimbursed at ~$100K/year, with average of 22 years on treatment
 - Up to 3% of all people diagnosed with COPD may have undetected AATD

Cumulative Mortality
AAT augmentation

Sources: AJRCCM 1998; 158:49; Worldwide racial and ethnic distribution of alpha(1)-antitrypsin deficiency. Chest 2002;122:1818
Benefits of SDF Process

<table>
<thead>
<tr>
<th>SDF Delivers...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinder, Gentler</td>
<td>▪ 2-stage sodium citrate precipitation + diafiltration</td>
</tr>
<tr>
<td></td>
<td>▪ Compared with Cohn method:</td>
</tr>
<tr>
<td></td>
<td>▪ No ethanol or harmful pH changes</td>
</tr>
<tr>
<td></td>
<td>▪ Less denaturing of select proteins</td>
</tr>
<tr>
<td></td>
<td>▪ 3 v. 6 day fractionation process</td>
</tr>
<tr>
<td>Yield improvements</td>
<td>▪ Up to 10-fold alpha-1 yield increase</td>
</tr>
<tr>
<td></td>
<td>▪ Potential for multiple orphan proteins (IVIG, C1 esterase)</td>
</tr>
<tr>
<td>Margin improvements</td>
<td>▪ Increase in margins to ~80% v industry standard ~30%</td>
</tr>
<tr>
<td></td>
<td>▪ with Cohn method</td>
</tr>
<tr>
<td>Broad Intellectual Property</td>
<td>▪ Three issued US and worldwide patents; additional IP pending</td>
</tr>
</tbody>
</table>
PTB-101 (SDF Alpha™) Registration Program

- Seeking FDA concurrence for registration studies to determine safety and bio-equivalency comparison of PTB-101 SDF Alpha™ versus approved API in individuals with AATD

- Endpoints with weekly 60 mg/kg dosing:
 - To demonstrate that the pharmacokinetics of antigenic and/or functional PTB-101 is not inferior to approved active comparator
 - To measure the efficacy of PTB-101 maintains antigenic and/or functional plasma levels of at least 11μM (57 mg/dL)
 - To compare alpha-1 protease inhibitor (API) trough levels (antigenic and functional) over weeks 7-12 (6 infusions)

- Study population of n=50 subjects; five week wash-out period prior to dosing

- Seeking additional regulatory guidance on potential long term follow up with enhanced dosing and schedules, as well as clinical and/or biomarker surrogate endpoints
Management, Directors & SABs
Management & Board

Management

- Tim Miller, Ph.D - President and Chief Executive Officer & Director
- Jeffrey B. Davis - Chief Operating Officer & Director
- Harrison G. Wehner - Chief Financial Officer
- David P. Nowotnik, Ph.D - Senior Vice President, Research & Development

Board of Directors

- Steven H. Rouhandeh - Executive Chairman
- Mark J. Ahn, Ph.D - Vice Chairman, Director
- Mark J. Alvino - Director
- Stephen B. Howell, MD - Director
- Todd Wider, MD - Director
Rare Disease
Scientific Advisory Board (SAB)

Gene Therapy
- Pol Boudes, MD
 - Cymabay Therapeutics
- Brian Kaspar, PhD
 - Nationwide Children’s Hospital & Ohio State University
- Maria Escolar, MD, MS
 - University of Pittsburgh Center for Neurodegenerative Disorders

Plasma Products
- Eugene J. Zurlo, BS (Pharmacy), MS
- Charles H. Heldebrant, PhD
- Robert A. Sandhaus, MD, PhD, FCCP
 - National Jewish Health
- Charlie B. Strange, MD, FCCP
 - Medical University of South Carolina
Financial Summary

<table>
<thead>
<tr>
<th>Capitalization</th>
<th>Issued and Outstanding Shares</th>
<th>WAEP (Weighted Average Exercise Price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common shares (ABEO)</td>
<td>32,743,013</td>
<td>-</td>
</tr>
<tr>
<td>Warrants (ABEOW, fully traded)</td>
<td>2,572,881</td>
<td>$5.00</td>
</tr>
<tr>
<td>Warrants issued since Dec 2014</td>
<td>782,500</td>
<td>$7.81</td>
</tr>
<tr>
<td>Options(^1)</td>
<td>3,429,000</td>
<td>$5.01</td>
</tr>
<tr>
<td>Primary Total</td>
<td>32,743,013</td>
<td></td>
</tr>
<tr>
<td>Fully Diluted Total</td>
<td>40,550,774</td>
<td></td>
</tr>
<tr>
<td>DEBT</td>
<td></td>
<td>$0</td>
</tr>
</tbody>
</table>

1. Does not include 653,727 “old” warrants and options outstanding with WAEP of approximately $28.77
Milestones

✓ **1Q16:** FDA Allowances for phase 1/2 clinical study for both ABO-102 for MPS IIIA & ABO-101 for MPS IIIB

✓ **2Q16:** Dosed First Patient in Phase 1/2 clinical studies for MPS IIIA

✓ **2Q16:** FDA Allowance for phase 1/2 clinical study for ABO-101 (AAV-NAGLU) for MPS IIIB

➢ **2016:** Initiate PTB-101 (SDF Alpha™) preclinical and clinical studies

➢ **2016:** Finalize clinical program for ABO-201 (scAAV CLN3) gene therapy for Juvenile Neuronal Ceroid Lipofuscinosis (JNCL)

➢ **2016:** Dose First Patient in Phase 1/2 clinical study for MPS IIIB

➢ **2016:** CTA Allowance in Spain for both MPS IIIA and MPS IIIB

➢ **2016:** CTN Allowance in Australia for both MPS IIIA and MPS IIIB
Investment Summary

Abeona Therapeutics is clinical-stage gene therapy company focused on rare diseases

- Validated and scalable technology for gene therapy and plasma-based products
- Ongoing rare disease Clinical trials:
 - ABO-102 (scAAV-SGHG) - AAV gene therapies for Sanfilippo syndrome (MPS IIIA)
 - ABO-101 (AAV-NAGLU) - AAV gene therapies for Sanfilippo syndrome (MPS IIIB)
- Rare disease pipeline:
 - ABO-201 (scAAV-CLN3) – AAV gene therapy for juvenile Batten disease (JBD)
 - ABO-301 (AAV-FANCC) for Fanconi anemia (FA) disorder using a novel CRISPR/Cas9-based gene editing approach to gene therapy program for rare blood diseases
 - SDF Alpha™ (alpha-1 protease inhibitor) for inherited COPD using proprietary SDF™ (Salt Diafiltration) ethanol-free process

Broad intellectual property (IP), and regulatory exclusivity (Orphan, Rare Pediatric Disease designation)
Investor Contacts

Christine Berni-Silverstein
Vice-President, Investor Relations
Phone: 212.628.6212
Email: csilverstein@abeonatherapeutics.com

Andre’a Lucca
Vice-President, Communications & Operations
Phone: 212.786.6208
Email: alucca@abeonatherapeutics.com
Working together to find a cure.